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ON CERTAIN SPECTRAL RELATIONSHIPS ASSOCIATED
WITH THE CARLEMAN INTEGRAL EQUATION
AND THEIR APPLICATIONS TO CONTACT PROBLEMS

S.M. MKHITARIAN

Special relationships /1/ for an integral operator generated by a symmetric power
series in a finite interval containing Gegenbauer polynomials is established again
by methods of the theory of a generalized potential. Spectral relationships for
this same operator are also established in the case of two symmetric semi-infinite
intervals. A solution is constructed on the basis of these latter, for the contact
problem of the impression of two identical semi-infinite stamps into a half-plane
deformable according to a power law.

A number of similar spectral relationships in orthogonal polynomials for integral opera-
tors encountered in diverse mixed problems of elasticity theory and mathematical physics is
established in papers for which a detailed bibliography is presented in /2/. A method, on
their basis, using orthogonal polynomials which is developed substantially in these papers,
permits an effective solution to be obtained for an extensive class of contact and mixed
problems of the mechanics of a deformable body. The paper /3/ is also devoted to the applica-
tion of the apparatus of orthogonal polynomials.

Carleman /4/ first considered an integral equation with a symmetric power series in a
finite interval, where the method of continuation of the equation in the complex plane is used.
A more general equation is examined in /5/ by the methods of the boundary value problems of
the theory of analytic functions. A solution of the Carleman equation in the form of quad-
ratures without integrals in the Cauchy sense was obtained first in /6/.

1. Let us consider the Carleman integral equation

1
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in order to determine the eigenfunctions and eigennumbers of the integral operator entering
here, To this end, we consider the function of two variables

1
V(z,y)as gl do (1.2)
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As is shown in /7,8/, the function V (z,y) satisfies the differential equation
A o W kW,
Bzr U By Ty oy

everywhere in the 20y plane except on the segment L = {—1 2z <1, y=0)
For h = Y3 this equation is encountered also in problems of gasdynamics /9,10/ in con-
nection with the known Tricomi problem. It is seen that

1
V(x,y}~—£, r— o0 (r=]/x5+y5; P=Sq:{s}ds
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Therefore, the solution of the integral equation (1.1) is equivalent to the solution of
the following external boundary value problem

*prikl.Matem,Mekhan., Vol.47,No.2,pp.219-227, 1983

180



181

AV+_’L.£’.V_= , @y eEL (1.3)

VEhme=i@), —1<z<t Vg~ rooo

An analogous boundary value problem is obtained in /11/, where the question of unique-
ness of the solution is touched upon.

After the solution of the problem (1.3) has been constructed, the source density will be
determined by the formula

— 29 RT[(1 + hy2][T (hf2)} sgnyop (z) = llmly pEEp (" ) (1.4)

We transform the boundary value problem (1.3) into an equivalent problem that allows ap-
plication of the method of separation of variables, for which we set

Viz, y) =y [4?U (z, y)
Furthermore, as in /12/, by using the Zhukovskii function

s=p(t+5) z=z+iy {=F+in=pe

we map the plane z with a slit along the segment /-1,l/ on the unit circle p <C1 of the plane
{. We will have here

T (p+ )cosﬁ, y=L(p——:)->Sin0 {1.5)

1
—l a ‘ '—1)2 +4p2sm- (1.6)
r=$}/p + 2p%cos2¢ + 1

(1.7

These results from (l1.7) that the point 2z = oo corresponds to the point { =0, Taking
the latter and formulas (1.5) and (1.6) into account, we transform the boundary value problem
(1.3) into the following boundary value prablem for a unit circle:

1
AW +h(2 — h)[(pz 1)ZJM‘.)zsin,ﬁ]W=o, p< 1 (1.8)

[_%._ ‘ (p-— %) sin® I ] My (0 9) o=1 = f (cos B)

W (o) poo=0, —a<8Ln
. W aw 1 W\
(Aw-apz"' o T o)

1
p
(W(p, hH=U [—;—(p—}——p—)cosﬂ, -Z—(p—%)sinf)] =U(x,y))

We now apply the method of separation of variables to (1.8), for which we put
W{(p, %) = R (p) @ ()
We consequently arrive at the differential equations

2 d°R dR 2
oG g+ [hC— ) =2 R=0, 0<p<t (1.9)
B2 —h)

W"‘[’"z"'m]m:O’ —a<dLn (1.10)

where A* is the separation parameter. By using (1.8) it is possible to detect that (1.9)
should be examined under the condition

R(©0) =0

(1.11)

and the eqguation (1.10) under the periodicity condition
Q0 =0 (% + 2n) (1.12)
Together with the additional condition cited below for (1.10), these conditions result

in Sturm=- Liouville boundary value problems for the differential equations mentioned.



182

Let us first construct the solution of (1.10) by considering 0 <& < n. The substitution

Q@)= Ysin BG(9), 0 < ¥<n

converts the equation mentioned into a Legendre differential equation that has the linearly
independent solutions
Pp(cos®), Q(cos ) 0<t <, v=1r—1, p=(1—-h2

Representing the Legendre functions in the form of known trigonometric expansions /13/,

by using (1.12) we find that there should be A= n +h/2,n=0,1,2,..., From these expansions
we find that the function (sin 9)BP,_ » (cos #) (0 < B < 1) allows of an even continuation in the
interval —a<{{¢ <0 while the function (sin 9)*Q, ,*(cos ¥} is an odd continuation of this same

integral. But according to the second relationship (1.8}, the desired solution should be even.
Consequently, the single solution of equation (1.10) determined by means of (1.12) and this
additional condition will have the form

(D(ﬁ) Vlslnﬁlpn_uu(c080)g ﬁ<"’{, n o= 0; i} 2’~*' (1.13)

Taking into account the relationship connecting Gegenbauer polynomials to Legendre func-—
tions /13/, we can finally write
D(B) = {sin O M2 (cos B), —n LB <m,n=0,1,2,...
Now turning to (1.9}, we set
u=p% R(Vu)=M@), 0us<1

Following the known procedure of the analytic theory of differential equations /14/, it
can be shown that the equation obtained is determined by the following Riemann scheme

0 oo 1
M () == uM2 (1 — u)fapi O h/2 0 u
—A A+ Rh2 1—h

But the function M, (u) satisfying the hypergeometric differential equation /14/ for
a=h2,b=r+h2, c=r+ 1, A=n-+n2 n=01,2, ..

is described by the Riemann scheme mentioned.
Linearly independent solutions of this equation will be

F(a, bieciu), t™F(@—c+1, b—c+1;2—cn)

where F{a, b;c; u) is the Gauss hypergeometric function. However, the second sclution is not

bounded at the point = ( for the parameters mentioned, and because of condition {1.11) only
the first solution must be taken. Then finally
Rp) = p™he(1 — o2 F (W2, n+h; n+1+ W2 pH 0p<t (1.14)

Comparison of (1.13) and (1.14) yields thet the boundary value problem (1.3) possesses a
normal sclution of the form

Vo(p, ®)==p*"F (Rf2,n 4 h;n + t 4 hJ2; p%) chre (cos ) (1.15)
0o <<, —ag<o<n, n=0,1,2,...
1 1 i 1 .
(Vo p. =V [—2-(9-}- —;;)COS 0.-2-<p-?-)sxnﬁ] =V {z, y})
Starting from the potential (1,15), we calculate the appropriate density of sources for
which we transform {l1.4). For definiteness, we obtain

_ TR T {n+ 14 5472) i hey ORIT (1.16)
@ (cos )= VPR T4 T REIT v 27 {(sin 0)*-1 €% (cos ), 0 <R <

by considering < ¥ < n and using (1.15). )
Substituting (1.16) and {(1.15) for p =1 into (1.2), we obtain the desired spectral re-

lationship after certain operations

g C’,’:” (8) ds

(1.17)
[z —s|h (1 — syd-M2 =p.Cn (@), |z| <1, n=0,1,2....
1

o =0T (n -+ k) [nL T (k) cos (wh/2)]™
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which had been established earlier by other methods /1/.
It is important to note that the method elucidated here permits obtaining also an expres-

sion for the integral from (1.17) outside the interval |z]<1, i.e., on the rays |z|>1.
Namely, on these rays

p=|z|—sgnzyzt—1, |z|>1
as results from (1.5) where the value = (Q corresponds to the ray z>1 and the value

4=1n to the ray z<C—1. Again, substituting (1.16) and (1.15) into (1.2), we arrive at an
integral relation similar to (1.17) after manipulation (H (z) is the Heaviside function)
1
S Cch2 (s) ds
[z— 3|h a— Sz)(l—h)l2

=va[H (2) + (=) H(—2)][ | 2] —

-1

sgnz Y2t —1]vh F (B2, 0+ hyn 41 4 hf2; 22 —
20 Yzt —1—1), [z|>1

_ VET(U+mRIT etk o
n= TE(h) ni T (n+ 1+ £/2) Lt A

\

2. We now turn to an examination of the integral equation

(_Sl+§)_l“;_(j%=ux) (2.1)
—_— 1

We again introduce a function of two variables

\ 2
V(x,y>=§—iﬁf;;],,7 (L={lz]>1,y=0) (2.2)

where, as before, we assume the source density to possess the finite power

P={gp@ds< oo
L
although this condition may not even be satisfied for individual harmonics. Then the integral

equation (2.1) is equivalent to the following boundary value problem:
h 3V -
AV+TW= , @myel (2.3)

V@ nhmo=1@), |2]>1, V@ pos, roo

To construct the solution of (2.3), we note that the Zhukovskii function presented above
maps the z plane with the cut off rays |z|>!1 onto the n >0 half-plane of the [ plane,
The upper plane y >0 is here mapped onto an infinite semicircle {p >1, 0 << ® < n1) while the
lower half-plane y<C0 is mapped ont the semicircle {p<<1, 0 << # << n). Therefore, (2.3) can
be converted to the boundary value problem

AW+ h (2= 1) [ g + e | W =0, p< o0, 0 <O (2.4)
[ (o= )sim0]™ W (0, 8) omo, o=
([ eot], s <o

<%Ip—;—'sinﬂyk/’W(p,ﬁ)lp_.o,mm%, r—oo

where the notation is as before.
Setting
Wip, 8) = R(p) ®(9)
as before we again arrive from (2.4) at the differential equations (1.9) and (1.10) in which
A should be replaced by —22,
Furthermore, by proceeding perfectly analogously to the manner elucidated above, we find
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that the boundary value problem (2.3) possesses a normal solution of the form
r 1 1 .
V (z,y)=Vo(p,1‘})=(Tlp-——p—|sm1‘})ux
[Py (cos9) + BQu (cos O)] {CPw [ (o + )] +
- 1 .1
bpH ['Z—(P*T)J}, pLloo, 0B
V==Y, it op =1 —hy2 A>0

Now, starting from (2.5) we construct even and odd functions in ¢ with respect to the
point 1 = n/2 We set

G (9) = APH(cos ¥) + BQy¥ (cos 9), 0 < ¢ < n

and we use the known relationships (/13/, p.145). Then the equality G(8) =G(n — (0 << ¢
<< nf2) governing the even function with respect to the point &= n/2, results in a linear

homogeneous system with respect to the constants 4 and B. The determinant of this systemis
identically zero, and therefore, it has a nontrivial solution

=2 [s(4 -]

By using this equality, we can represent the even real function that is a component of
the normal solution by the formula

G () =(in G (), 0¥
Gt (8) =P o 9) + = {tg [ (4 — )] 0wt (cos 8) +
e [s(4— )] o ro)
We can analogously represent the odd real function by the formula
Gy (§)=(sin ¥+ G~ (9), 08 <n (2.7)
G (8) = Py (cos 9) — - {otg [ (- — ) ] @ (cos ®) +
ctg [ﬂ (% + T)] Q5+ (cos 0)}

(2.6)

Furthermore, weset C=1 and D=0 in (2.5).

Then the normal solution of the bound-
ary value problem (2.3) will have the form

Volp, ) =( |0 — 5| ) 6o (®) P [ 1 (0 + 5] (2.8)
P<w’0<0<ﬂ

Ifweset (=0 and D=1 in (2.5), we will then have
Volp. 9)=(|o— |V 6 ® 2 [ (o + )] (2.9)

pLoo, 0O

Let us find the source density. Proceeding perfectly analogously to what was done above,
we obtain from (2.8) and (2.6)

v@=E [ (o—=)]" P[5 (p++)] (2.10)
=), o>

R ST X 1 -4 cos (nhf2) ch A
E,\" == 2011 ’r(hlz)'—fm—+i7~)Ilchﬂk+¢“(ﬂﬁr)])'

We now go from the variable p to the variable z in (2.10) and (2.8) for ¥ =0 and we

substitute the results obtained into (2.2). After manipulation we arrive at the spectral
relationship

S[I::svl + (z-:-s)h ](sz—l)_“¢+(s,l)d8= 6, (M @ (z, M), z>1, A>0 (2.10)
1
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Starting from the other components of (2.6)— (2.7) and (2.8)— (2.9), by completely analog-
ous means we cbtain the following spectral relations as well:

S[szisx" N (z;s)’* ](32—1)-““’+("’“)‘i“= (2.12)
1

o.M g, (z,h), z>1, A>0
V= T e e ds= (2.13)
1

oMo (x ), z>1, A>0
(92 {7, 1) = (a* — 1p/APF* (2))
(04 (M) = [ch nh -+ cos (nh/2)1 | T (B/2 + iA) P T (R} X
cos (nk/2)]7)

By formal addition and subtraction of (2.11) and (2.12) as well as by (2.13), we arrive
at still four other spectral relations

oo

Lol (2 gyudsmpy (Mg, (zh), z>1, A>0 (2.14)
PATEY

S’u%'is"s%<32—1>'“ds-—-—pi(x)cp-<z,x), z>1, >0 (2.15)
1
p. (M) = |T (W2 4+ ) PIT (W1, p_ (M) = chad |T (A2 +

iA) gz IT (R} cos (mrf2)]7?

Setting h =1 in (2.14) and (2.15) when there is a plus sign, we obtain the known Mellor
spectral relationship /15/.

On the basis of the results elucidated, relationships similar to (2.11)— (2.13) can be
cbtained that are valid in the interval (< z< 1. It can be noted that the arc {p = 1,0<
% < #/2} of a circle in the { plane corresponds to this interval. Proceeding analogously to
the above, by using {(2.8)~ (2.9}, (2.6) and (2.10), we arrive at the relations

1 1
S[iz—sl" (@ -+ 9" ](S’—i)'“(p+(s,7\.)ds= (2.16)

e (A (1 — 226G % (arccosz), 0Lzt

°§[ 1 -+ 1 ](3"—1)'“q>_{s,?.)ds=0, o<z <t
1

fe—si* ™ @@+9*

[ch A 4 cos (h/2)

%y (M) ==|T (B2 4 1) |? [T () [1 T c0s (wh}2) oh ak])

Furthermore, by using the formulas for the generalized Mellor transform, we obtain the
following bilinear expansion from (2.11):

al (k) cos (n%) [}z:slh + (x—;s)h ][(zz..i)(s*_i)}"‘ﬁ.-_.

§ Ashn) [ch A < cos (-32}1-):( II‘ (-}2'— -+ i?.,) “ Py (z) P (s) dh

z>1

It is seen that this last integral converges. The same expansions can be written by using
(2,12} — (2.13).

3. e apply the results cbtained to solve a contact problem on the impression of two
identical semi-infinite stamps occupying the domain {lz1>a,y= 0} on a half-plane y<O0 being
deformed according to the power law 0; = Kei®* (0 <a<<1),

We assume that the stamps subjected to the forces applied can be moved only translation-
ally in the vertical direction. Here o; and & are the stress and strain intensities, while

K, and ¢ are physical constants of the material. This physical law can be considered within
both the framework of the deformation theory of platicity and the theory of steady creep, but
in the latter case &; must be understood to be in the strain intensity. By adhering to the
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generalized principle of superposition of the displacements /16,17/, the solution of the
problem mentioned can be reduced to the solution of the integral equation

-q o«
p(s)ds 85— 1o (2) 10 ‘
(_Sm+§>|:—sl““:[ v 1 (3.1)
Ag= (2 — ¥)sin (af/2) [Kod MVIB (y — 1]
: nfz

J{a) = 4 S (cos pB)* cos 0 48, B = Via—Tfa, v = ifa

(]
where p (z) is the contact pressure, § is the settlement of the stamps, and j,(z) is a function
characterizing the surface of the stamps.

We limit ourselves to the examination of the symmetric case. As usual, we assume the
contact pressure to have a finite resultant P. Then the left side of (3.1) has the asympt-
otic pf|z|v™ as |z]|-—+o. Therefore

folz) ~8 — 4PV 2P, (2] 500
from which the settlement § of the stamp is actually determined.

Furthermore, we turn to dimensionless quantities in (3.1)

z=af, y=an, ap (aB)/P = ¢ (§), a¥™®4,"% [8 — fo (2P = { ()

after which we will have the equation

o

1 i
dn == y h=f— (3.2)
S[ E—al T &+ ]“’(") =1 ¢

We represent the solution of (3.2) in the form of the integral

9@ =@— 12 o) PY, ., @ ar (3.3)
L]

Taking (2.11) into account, we find by means of the Mellor inversion formula

£

T (h sthf2) A sh stk
O () = n(c)cosfi-cljs(s 3 SPﬁm(i)(v—i)“‘*”f(a)da (3.4)
1

Thus, the solution of (3.2) is given by (3.3) and (3.4).
Now, setting

¢ 1 1
= e dn, O 1
vg (8} §[ E—qp Ernr ]@{73} s, 0<CE<
by using the first relationship in (2.16) when the plus sign is taken, we obtain
v (8) =, (1) (1 — 89~ 6 (arc cos£) @ (1) ah
o

Within the limits of the accuracy taken, the true displacements of the boundary points of

the half-plane outside the stamps will be expressed by the formula
vi{z) = —A4a" VPVyY (zhe), 0 <z < e

Let us note that the results of this section can be extended to the problem under con-
sideration in a linear elasticity theoxry formulation /18/ when the elastic modulus of the
half-plane varies in depth according to the power law E () = Ely{* 0 * <1, y<<O).

It should still be noted that the application of potential theory methods will permit not
only the establishment of a large number of spectral relationships known earlier, but also
the obtaining of a number of new ones, and thereby, substantial broadening of their class.
They afford the possibility of obtaining spectral relations by a single method for many integ-
ral operators.

Moreover, the necessary physical characteristics can be found not only in the domains
where the integral equations are given, but also outside of them, which is especially import-
ant in three-dimensional problems.
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