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ON CERTAIN SPECTRAL RELATIONSHIPS ASSOCIATED 
WITH THE CARLEMAN INTEGRAL EQUATION 

AND THEIR APPLI~TIONS TO CONTACT PROBLEMS* 

S.M. MKHITARIAN 

Special relationships /l/ for an integral operator generated by a symmetric power 
series in a finite interval containing Gegenbauer polynomials is established again 
by methods of the theory of a generalized potential. Spectral relationships for 
this same operator are also established in the case of two symmetric semi-infinite 
intervals. A solution is constructed on the basis of these latter, for the contact 
problem of the impression of two identical semi-infinite stamps into a half-plane 
deformable according to a power law. 

A number of similar spectral relationships in orthogonal polynomials for integralopera- 
tors encountered in diverse mixed problems of elasticity theory and mathematical physics is 
established in papers for which a detailed bibliography is presented in /2/. A method, on 
their basis, using orthogonal polynomials which is developed substantially in these papers, 
permits an effective solution to be obtained for an extensive class of contact and mixed 
problems of the mechanics of a deformable body. The paper /3/ is also devoted to the applica- 
tion of the apparatus of orthogonal polynomials. 

Carleman f4f first considered an integral equation with a symmetric power series in a 
finite interval, where the method of continuation of the equation in the complex planeisused. 
A more general equation is examined in /5/ by the methods of the boundary value problems of 
the theory of analytic functions. A solution of the Carleman equation in the form of quad- 
ratures without integrals in the Cauchy sense was obtained first in /6/. 

1. Let us consider the Carleman integral equation 

in oxder to determine the eigenfunctions and eigennumbers of the integral operator entering 
here. To this end, we consider the function of two variables 

(1.21 

As is shown in /7,8,/, the function $J(x,zJ) satisfies the differential equation 

everywhere in the si& plane except on the segment f, = i-1 <,<z < 1, y = 0) 
For h = I/$ this equation is encountered also in problems of gasdynamics /9,10/ in con- 

nection with the known Tricomi problem. It is seen that 

V@,Pf---3 3-300 (r=fxv); Pa S cP@lds 
--I 

Therefore, the solution of the integral equation (1.1) is equivalent to the solution of 
the following external boundary value problem 
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(1.3) AV+ +g=o, (z,y)EL 

v (G Y) Iv-0 = f (4 --l<z<l; V(Z,Y)-5, r-+00 

An analogous boundary value problem is obtained in /ll/, where the question of unique- 
ness of the solution is touched upon. 

After the solution of the problem (1.3) has been constructed, the source density will be 

determined by the formula 

- 2 I/;ir[(l + h)/2][r(h/2)]-'sgny(P(")= liilylh w (1.4) 

We transform the boundary value problem (1.3) into an equivalent problem that allows ap- 
plication of the method of separation of variables, for which we set 

v (z, y) = 1 y I-w7 (29 Y) 

Furthermore, as in /12/, by using the Zhukovskii function 

we map the plane z with 
5. We will have here 

These 
the latter 
(1.3) into 

results from 
and formulas 

Z=-+(6++), Z=s+iy, c=E+iq=pe*e 

a slit along the segment /-l,l/ on the unit circle p< 1 oftheplane 

r=$(p+$)COS6, y=+(p-+$)sin* 
1 dt 2 

4y:’ I I dE =&jT+4& 

r=&fP4+2P'cos21)+1 

(1.5) 

(1.6) 

(1.7) 

(1.7) that the point z = 00 corresponds to the point 6 = 0. Taking 
(1.5) and (1.6) into account, we transform the boundary value problem 

the following boundary value problem for a unit circle: 

AW+h(2-h)[++&]W=O, p<1 4psm*th 

[aI(,-~)sineI]-h'2W(P,~)Ip=1=f(COS~) 

CV(p,-6)Ip=0=0, --n<e<il 

i 
A&$+$~+$~) 

(W(p,6)=U [~(p+~)cose,~(p--$)sin~]=U(Z(Y)) 

(1.8) 

We now apply the method of separation of variables to (1.8), for which we put 

W(P1 6) = R (P) @(6) 
We consequently arrive at the differential equations 

d”R 
P'~+P~+[h(2--)~-hl]R=O, OGP<l 

g+ [Xz++&$]@=O, -n,<t?<n 

where kz is the separation parameter. By using (1.8) it is possible to detect that 
should be examined under the condition 

(1.9) 

(1.10) 

(1.9) 

R (0) = 0 (1.11) 

and the equation (1.10) under the periodicity condition 

CD((6) = @(a + 2n) (1.12) 

Together with the additional condition cited below for (l.lO), these conditions result 
in Sturm- Liouville boundary value problems for the differential equations mentioned. 
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Let US first Construct the solution of (1.10) by considering 0(6(x. The substitution 

Q(u)= yzXz(6),o<e<?I 

converts the equation mentioned into a Legendre differential equation that has the linearly 
independent solutions 

Pg (co9 t?), Qv’ fcos 6); 0 < it < n, Y = k - l/2, p = (l - h)/2 

Representing the Legendre functions in the form of known trigonometric expansions /13/, 
by using (1.12) we find that there should be X = n -j-h/2, n = O,l, 2, . . . . From these expansions 
we find that the functian (sin 6)*P %_$ (CO9 9) (0<6(3c) allows of an even continuation in the 
interval -x <6<0 while the function (sin @)aQ n_lip (COS 6) is an odd continuation of this same 
integral. But according to the second relationship (1.8), the desired solution should be even. 
Consequently, the single solution of equation (1.10) determined by means of (1.12) and this 
additional condition will have the form 

@ (6) = J/ml P*_$ (cos I?), --n < 6 < H, n = 0, 1, 2,. * * (1.13) 

Taking into account the relationship connecting Gegenbauer polynomials to Legendre func- 
tions /13/, we can finaLly write 

(0(6)=~sin~~"~~C,~~2(~0s~),--n~,<~~X,~=0,1~2,... 

Now turning to (1.91, we set 

u=pz, R(fi)=M(u), O<u<l 

Following the known procedure of the analytic theory of differential equations /14/, it 
can be shown that the equation obtained is determined by the following Riemann scheme 

0 1 

M (4 e2: u”ln (1 - lpP 0 hop2 0 u 
--h h+hj2 l-h J 

But the function M,(u) satisfying the hypergeometric differential equation /14/ for 

a = M2, b = h+h12, c = h-t 1,h = n 4 h/2, n=O, 1, 2,. . . 

is described by the Riemann scheme mentioned. 
Linearly independent solutions of this equation will be 

F (a, b; c; u), CCF (a - c + 1, b - c + 1; 2 - c; u) 

where F(s, b; c; u) is the Gauss hypergeometric function. However, the second solution is not 
bounded at the point u = 0 for the parameters mentioned, and because of condition (1.111 only 
the first solution must be taken. Then finally 

R (p) = pn+h/z (1 - pa)hlz F (h/2, n + h; n + 1 + h12; p’), 0 < p < 1 (L.14) 

Comparison of (1.13) and (1.14) yields that the boundary value problem (1.3) possesses a 
normal solution of the form 

Vo (p, 6) = P*+~F (h/2, n $ h; n + t-f- h/2; pz) C;‘* (cos 6) 

O*sP<l, -x<S<x, n=O,l,Z ,... 

(1.15) 

Starting from the potential (1.151, we calculate the appropriate density of sources for 

which we transform (1.4). For definiteness, we obtain 

by considering O( 6< ar and using (1.15). 
Substituting (1.16) and (1.151 for p = 1 into (1.21, we obtain the desired spectral re- 

lationship after certain operations 

1 

s C;fl (8) ds 

_-l , t _ s Ih (1 _ &l-h)/+2 = hC~‘* (‘h 1 2 1 < I, n=0,1,2... . (1.17) 

pn = nr (n +” h) [n! r (h) cos (xh/q]-’ 
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which had been established earlier by other methods /l/. 
It is important to note that the method elucidated here permits obtaining also an expres- 

sion fox the integral from (1.17) outside the interval Isl<l, i.e., on the rays jzl>l. 

Namely, on these rays 

as results from (1.5) where the value 6 = 0 corresponds to the ray x> 1 and the value 

6=n to the ray ~(-1. Again, substituting (1.16) and (1.15) into (l-2), we arrive at an 

integral relation similar to (1.17) after manipulation (H(x) is the Heaviside function) 

r"(h) n! r (n + 1 + h/2) ’ n=0,1,2,... 

2. We now turn to an examination of the integral equation 

We again introduce a function of two variables 

(2.1) 

(2.2) 

where, as before, we assume the source density to possess the finite power 

P=S rp(s)ds<m 
L 

although this condition may not even be satisfied for individual harmonics. Then the integral 
equation (2.1) is equivalent to the following boundary value problem: 

(2.3) 
r-30 

To construct the solution of (2.3), we note that the Zhukovskii function presented above 
maps the Z plane with the cut off rays 11 I>1 onto the q >0 half-plane of the 6 plane. 
The upper plane y>O is here mapped onto an infinite semicircle {p > 1, 0(6(n) while the 
lower half-plane y CO is mapped ont the semicircle {P<l, O<@(x). Therefore, (2.3) can 
be converted to the boundary value problem 

where the notation is as before. 
Setting 

W(P, -fE) = R(P) @(@I 

as before we again arrive from (2.4) at the differential equations (1.9) and (1.10) in which 
X2 should be replaced by --h2. 

Furthermore, by proceeding perfectly analogously to the manner elucidated above,we find 



that the boundary value problem (2.3) possesses a normal solution of the form 

V(z, y) =V,(P,B)=(~IP-_lSia~)'x 

[AP,P (cos ti) -j- BQ,” (cos +)I [ CP,” [ + (P f +)] f 

DKq+(Pf$)]}~ p<wo, O<@<n 

Y = --‘/% + ih, p = (1 - h)/Z, h > 0 

(2.5) 

Now, starting from (2.5) we construct even and odd functions in 6 with respect to the 
point 6 = n/2 We set 

G (et) = AP,.” (cos +) + BQ,P (cos 8), 0 < 6 < n 

and we use the known relationships C/13/, p-145). Then the equality G(e) = G(n - 6)(0< 19 
<n/2) governing the even function with respect to the point 6= n/2, results in a linear 
homogeneous system with respect to the constants A and B. The determinant of this systemis 
identically zero, and therefore, it has a nontrivial solution 

+_+)I 

By using this equality, we can represent the even real function that is a oomponent of 
the normal solution by the formula 

Go(e)= (sin@)fiGx+(@), 0 <+<m (2.6) 

c,+(~)=ppg(cos6)+ + 
1 CC 
tg&&$ 

)I Qd' (COSW + 

tg [m(+ --+)I Q$(cos@)} 

We can analogously represent the odd real function by the formula 

Go (6) = (sin 6)~ G&-(6), 0 < 8 < x 

GA- (8) = I’,“ (cos 6) - $ [ctg [IT (+ - -$)I Q,P (cos 19) + 

ctg Jc +++ 
c ( )] Q$WW) 

(2.7) 

Furthermore, we Set C=l and D=O in (2.5). Then the normal solution of the bound- 

ary value problem (2.3) will have the form 

~~(P,~)=(~IP--$()'Go(~)P~[~(P+~)! (2.8) 

P<m? O<S<n: 

If we set C = 0 and D=1 in (2.5), we will then have 

v,(P,~)=(~IP--$IG~(6)p;LL[~(P+~)] (2.9) 

P<,=V o<e<n 

Let us find the source density. Proceeding perfectly analogously to what was done above, 

we obtain from (2.8) and (2.6) 

m(z) =Eah [+(P -$)]"p%Jj+(P-!-$)], (2.10) 

z=+(P+$), p>* *+cos(nnp)ch~ 
Ekh - 2-m-N" (h/2) 

(Ir(~++Ih)ltchnl+~(~~F)l)’ 

We now go from the variable p to the variable x in (2.10) and (2.8) for 6= 0 and we 

substitute the results obtained into (2.2). After manipulation we arrive at the spectral 

relationship 

S[ 1 

1 I~-Slh 
+ --& ts* 

tt + 4 1 -1)~~cp,(s,X)ds= a+@)cp+(z,J4, 2>19 A>0 
(2.11) 
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Starting from the other components of (2.6)- (2.7) and (2.8)- (2.91, by completely analog- 

ous means we obtain the following spectral relations as well: 
m 

S[ 1 -- 
]. ,*‘,,h 7 (s*-1)*~+(s,a)ds= 

e+4 1 
~_(Vtp+fG~), s>f, n>o 

a: 

U 1 1 

; ,t--s,h -L 
h 
(z-i-4 I 

(s'- i)-" rp_(s, h) ds = 

~~(~)~_(~,~), s>i, h>O 

(rp,t (2, k) = (SP - 1)wJ~~ (2)) 

(aA = ich na fcos(nM2)l 1 r(h/2 + ia) p [r(h) x 
cos (nkn)I-1) 

(2.12) 

(2.13) 

By formal addition and subtraction of (2.11) and (2.12) as well as by (2.13), we arrive 
at still four other spectral relations 

m 

f Jq(s'- I)-‘ds=~(h)rp+(z,h), z> 1, n> 0 
I l=rtsl 

(2.14) 

(2.15) 

p,(h) = 1 r&c! + ih) 1" fr (@I-', p_(L) = ch na 1 r(h/2 + 
ia) p [r fh) cos (d4zfl-~ 

Setting h = 1 in (2.14) and (2.15) when there is a plus sign, we obtain the knownMellor 
spectral relationship /15/. 

On the basis of the results elucidated, relationships similar to (2.11)- (2.13) can be 
obtained that are valid in the interval O<S<l. It can be noted that the arc (p = i,o< 
6 < s!J1 of a circle in the 6 plane corresponds to this interval. Proceeding analogously to 
the above, by using (2.8)- (2.91, (2.61 and (2.10), we arrive at the relations 

m 

1 1 

12_sl”f- (2 + 4 I (9 - 1)-L” ‘p+ (s, a) as = (2.16) 

-r%(n)U -r*)W*G~f(arccoss), O<s<l 
Cc 

-wcp_fs,a)ds=o, o<z<i 

Furthermore, by using the formulas for the generalized Mellor transform, we obtain the 
following bilinear expansion from (2.11): 

3tr (h) cos 
i H 
n + i -4 *] w-f)@S-w@= 

Is-sl 

5 [ ash3ta chsra+00~(~)]Ir(~+Ia)14PS(z)p,e(s)da 
0 

It is seen that this last integral converges. 
f2.12)- (2.131. 

The same expansions can be writtenbyusing 

3. We apply the results obtained to solve a contact problem on the impression of two 
identical semi-infinite stamps occupying the domain {I@l>~*Y= 
deformed according to the power law q= &ei"(O<a<f), 

0) on a half-plane ~(0 being 

We assume that the stamps subjected to the forces applied can be moved only translation- 
ally in the vertical direction. Here oi and 8: are the stress and strain intensities, while 
& and a are physical constants of the material. This physical law can be considered within 
boththe framework of the deformation theory of platicity and the theory of steady creep, but 
in the latter case ei must be understood to be in the strain intensity. By adhering to the 
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generalized principle of superposition of the displacements /16,17/, the solution of the 
problem mentioned can be reduced to the solution of the integral equation 

n/s 
J(a)= 4 S (c~s~~)~coso~~). B- v%Z% Y = ila 

0 

where p(t) is the contact pressure , 6 is the settlement of the stamps , and fo(z) is a function 
characterizing the surface of the stamps. 

We limit ourselves to the examination of the symmetric case. As usual, we assume the 
contact pressure to have a finite resultant P. Then the left side of (3.1) has the asympt- 
otic P/ 12 11-a as IzI-00. Therefore 

fc (i) - ~-dA9~Js]~~,]r/~cc 

from which the settlement 8 of the stamp is actually determined. 
Furthermore, we turn to dimensionless quantities in (3.1) 

2 = al, El = an, ap (o&/P = rp (Q, a'-=A@-;-a [6 -ffo (a%WP = f (E) 

after which we will have the equation 

We represent the solution of (3.2) in the form of the integral 

q, (E) = te* - l)““rQ (A) Pkf~,,+~~(Qdl 
0 

Taking (2.11) into account, we find by means of the Mellor inversion formula 

(3.2) 

(3.3) 

(3.4) 

Thus, the solution of (3.2) is given by (3.3) and (3.4). 
Now, setting 

by using the first relationship in (2.16) when the plus sign is taken, we obtain 

Within the limits of the accuracy taken, the true displacements of the boundary points of 
the half-plane outside the stamps will be expressed by the formula 

Y (z) = -A@'-vPquI;v fria), 0 < z < a 

Let us note that the results of this section can be extended to the problem under con- 
sideration in a linear elasticity theory formulation /18/ when the elastic modulus of the 

half-plane varies in depth according to the power law E (Y) = E. I Y I" (0 < a< 1, Y < 0). 

It shouM. still be noted that the appl.ication of potential theory methods will permitnot 
only the establishment of a large number of spectral relationships known earlier, but also 
the obtaining of a number of new ones, and thereby, substantial broadening of their class. 

They afford the possibility of obtaining spectral relations by a single method for manyinteg- 
ral operators. 

Moreover, the necessary physical characteristics can be found not only in the domains 
where the integral equations are given, but also outside of them, which is especially import- 
ant in three-dimensional problems. 
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